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Which Model Best Simulates Human Behavior?
The Impact of Model Type and Personality Setting on the
Accuracy of Large Language Models in Replicating
Communication Studies Experiments

Zeng Xiugin , Chen Kelu( Xiamen University )

Abstract; This study selected four mainsiream large language models—ChatGPT-40, DeepSeek-R1,
Doubao-1. 5, and Kimi-K1. 5—as experimental subjects, employing a 2 ( with vs. without Big Five person-
ality settings) X 4 (model type) factorial design to construct virtual participants to replicate a communica-
tion experiment. Findings show clear performance differences: DeepSeek-R1 best approximated human avera-
ges and behavioral variability , while ChatGPT-40 displayed larger variance-fitting deviations but produced
highly accurate and stable replications of main and indirect effects. Without personality prompts, models more
closely matched human descriptive statistics ; with personality prompts, causal-effect replication improved , and
the only complete reproduction of two main effects occurred in this condition. Mediating effects remained dif-
ficult to replicate, though personality prompting helped reduce directional and magnitude deviations. Addi-
tional analyzes with ChatGPT-40 indicate that participant type ( human vs. no-personality vs. partial-personali-
ty vs. full-personality groups) significantly moderates certain main effects and mediation pathways, with per-
sonality prompts suppressing extreme responses. This study provides cross-model comparison under personali-
ty-prompt conditions ,demonstrating the value of Big Five prompting for enhancing simulation fidelity while
underscoring LLMs’ limitations in modeling complex psychological mechanisms.

Key words: large language model; Big Five personality traits ; replication study ; silicon-based subjects
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